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 Basic concepts

– SAR fundamentals

– Intro to passive SAR using GNSS 

– GNSS-SAR image formation and 
experimental results

 Advanced future concepts: 

– CCD – Coherent Change Detection

– Multi-perspective imaging

– Multi-static imaging

 GNSS-passive radar for maritime 
surveillance:

– Intro to using GNSS for passive 
sea target detection;

– Basic/advanced processing and 
experimental results

… as a Synthetic 
Aperture Radar 

(SAR) … as a radar

GNSS-based passive radar
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The basics

• Synthetic Aperture Radar (SAR):

An imaging radar that can generate 2-D 

images 

• How it works:

• Mount radar on moving platform(s)

• If transmitter/receiver antennas co-located: 

monostatic SAR. If not, bistatic SAR

• As the platform moves, radar collects 

echoes from an observed scene

• Echoes are “focused” in forward and 

lateral ranges using DSP to give a 2-D 

image (radar reflectivity map) of the scene

• Main point: Through DSP, a “synthetic” antenna aperture is formed that is equal to the physical 

length travelled by the platform- SAR requires motion of transmitter of receiver (or both)

Images © DLR

SAR Fundamentals
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• A bistatic, and passive SAR

• Transmitter: A navigation satellite (GPS, 

GLONASS, Galileo, Beidou etc.)

• Receiver: On or near the Earth’s surface, 

can be fixed or moving.

• 2-channel receiver:

• One antenna looking towards the satellite(s)-

signal synchronisation

• One towards the imaging scene- image 

formation

• Same configuration for all passive/bistatic 

SAR

GNSS-based SAR
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Advantages

• Low cost– receiver only, 

standard navigation receiver 

(even lower).

• Covert operation.

• Persistent and global 

monitoring – at any time of the 

day, at any point on Earth, there 

are 6-8 satellites overhead, and 

up to 32 when all 4 GNSS 

systems are fully operational.

• Choice of optimal positions of 

the satellites– better resolution 

and less shadowing.

• Multi-angle and multi-static 

capabilities

Challenges

• Coarse resolution– 30m for 
GLONASS L1,15m for 
GALILEO E5a/b band (quasi-
monostatic). Not good for hi-res 
applications, but good enough 
for Earth Observation.

• Low Signal-to-Noise Ratio 
(SNR)– due to low GNSS power 
flux density near the Earth. But 
can be fixed by long dwell times 
on target (5mins to see 
buildings up to few km range) 

7/14/2017

Clearly, active SAR is better in terms of 
resolution/power budget. But GNSS structure offers 
features not currently available with active systems

Why GNSS?
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𝑠𝐻𝐶 𝑡, 𝑢 = 𝑝 𝑡 −
𝑅𝐵 𝑢

𝑐
+ 𝑡𝑒𝑅𝑥 + 𝑡𝑒𝑎𝑡𝑚 𝑒𝑥𝑝 −𝑗

2𝜋

𝜆
𝑅𝐵 𝑢 + 𝜑𝑒𝑅𝑥 + 𝜑𝑒𝑎𝑡𝑚

𝑠𝑅𝐶 𝑡, 𝑢 = 𝑝 𝑡 −
𝑅𝑇 𝑢 + 𝑅𝑅 𝑢

𝑐
+ 𝑡𝑒𝑅𝑥 + 𝑡𝑒𝑎𝑡𝑚 × 𝑒𝑥𝑝 −𝑗

2𝜋

𝜆
𝑅𝑇 𝑢 + 𝑅𝑅 𝑢 + 𝜑𝑒𝑅𝑥 + 𝜑𝑒𝑎𝑡𝑚

Direct signal (Heterodyne Channel):

Reflected signal (Radar Channel):

𝑡, fast time
𝑢, slow time
𝑐, the speed of light
λ, the wavelength
𝑅𝐵 𝑢 , the instantaneous transmitter-receiver baseline
𝑅𝑇 𝑢 , the instantaneous transmitter-target  range
𝑅𝑅 𝑢 , the instantaneous receiver-target range
𝑡𝑒𝑅𝑥, time delay errors due to receiver artefacts

𝜑𝑒𝑅𝑥, phase errors due to receiver artefacts

𝑡𝑒𝑎𝑡𝑚, time delay errors due to atmospheric propagation

𝜑𝑒𝑎𝑡𝑚, phase errors due to atmospheric propagation

An example of GNSS-based SAR geometry
(with airborne receiver)

Geometry and signal model
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• Direct signal is collected by antenna looking at the satellite (Heterodyne Channel, HC)

• Reflected signal is collected by helical antenna looking at the observed area (Radar Channel, RC)

Image formation block diagram

Tx co-ordinates are taken from the 

online database (Satellite Ephemerides)

Signal processing
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Synchronisation Block Diagram

First stage of satellite signal detection

• SNR at HC antenna output: ~-25 dB, so cannot correlate HC and RC signals directly

• Signal synchronisation: Tracks direct signal properties, then creates a local, noise-free replica- very much same 

as navigation receiver processing 

• This local signal is then used for range compression

Synchronisation
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Phase error = 𝜑𝑒𝑅𝑥 + 𝜑𝑒𝑎𝑡𝑚

Delay error = 𝑡𝑒𝑅𝑥 + 𝑡𝑒𝑎𝑡𝑚

Reference signal:

𝑠0 𝑡, 𝑢 = 𝑝 𝑡 − 𝑡𝑒𝑅𝑥 + 𝑡𝑒𝑎𝑡𝑚 𝑒𝑥𝑝 −𝑗 𝜑𝑒𝑅𝑥 + 𝜑𝑒𝑎𝑡𝑚

Range-compressed RC data: 

𝑟 𝑡, 𝑢 = 𝑅𝑥 𝑡 −
𝑅𝑇 𝑢 + 𝑅𝑅 𝑢

𝑐
𝑒𝑥𝑝 −𝑗

2𝜋

𝜆
𝑅𝑇 𝑢 + 𝑅𝑅 𝑢

Image formation via back-projection
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WHY 

BPA?

• Long dwell-time on target (5mins)- satellite trajectory not a straight line, so 
frequency-based, more efficient algorithms not so straightforward 

• Coarse resolution, limited scene size- not so much data to be processed, 
so despite bigger computational complexity, the actual difference in 
processing time can be neglected for offline processing.

7/14/2017

𝐼 𝑥, 𝑦 =ඵ 𝑟 𝑡, 𝑢 𝑒𝑥𝑝 𝑗
2𝜋

𝜆
𝑅𝑇 𝑢 + 𝑅𝑅 𝑢

𝑥,𝑦
𝑑𝑥 𝑑𝑦

Scene grids      Range compression output Phase 
compensation

Image formation via back-projection
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• Receiver prototype

– 2-channel, super-heterodyne receiver

– Digital I/Q outputs

– All channels locked on same clocks/L.O.’s

– GLONASS /GPS/Galileo E5

 RF front-end 
(filter+LNA)

 High- (RC) and low-gain (HC) antennas 
(15 dBi, 6 dBi) – RHCP and LHCP (dual-pol) 

Experimental prototype
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Tab.1 Experimental parameters of the fixed receiver trail

7/14/2017

Parameters Value

Satellite GLONASS COSMOS  736

Satellite signal P-code

Signal bandwidth 5.11 MHz

Carrier frequency 1600.875 MHz

Equivalent PRF 1 KHz

Dwell time 300s

Satellite elevation during 

acquisition(relevant to HC antenna)
70.6°-72.7°

Experimental PSF BP simulated PSF Theoretically computed PSF

Experimental PSF
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N

W

Experimental setup

Experimental images- fixed receiver
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Experimental images- fixed receiver
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Experimental images- moving receiver
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1

2

3

4

5

• Image blurry and de-focused

• First attempt- lack of accurate helicopter 

positioning and a lot of motion errors

• Also, dense area not so suitable for our 

resolution

• Even so, main reflectors in the image visible
• Currently planning second set of trials

Experimental images- moving receiver
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GNSS-based passive radar 

 Basic concepts

– SAR fundamentals

– Intro to passive SAR using GNSS 

– GNSS-SAR image formation and 
experimental results

 Advanced concepts: 

– CCD – Coherent Change Detection

– Multi-perspective imaging

– Multi-static imaging

 GNSS-passive radar for maritime 
surveillance:

– Intro to using GNSS for passive 
sea target detection;

– Basic/advanced processing and 
experimental results

… as a Synthetic 
Aperture Radar 

(SAR) … as a radar
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Coherent Change Detection
• Can we compare temporally separated GNSS-based SAR images to detect surface 

displacements?

Radar 
Antenna

Synchronization 
Antenna

GPS 
Antenna

 

Radar

RC

HC

Target

Transmitter

Δx

 

R R+ΔR

• Need a strong reference target (high SNR) – like a building for proof of concept. 

• We also need a controlled displacement- we cannot move the building! But we can move 

the radar to emulate the corresponding shift
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Coherent Change Detection

• Use a single satellite, acquire images at satellite revisit

• First measurements at zero displacement- master

• Then shift receiver to emulate target displacement of fraction of 

wavelength, and take slave images

• Then compute coherence between master and slave images and their phase difference, 

and use that to translate to actual phase shift

λ/4 λ/2

• Coherence map threshold 0.7 • Correlation coefficient: Experiment vs model
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Coherent Change Detection

Parameter ΔR=λ/4 ΔR=λ/2 

Measured 

phase
105 o 163 o

Measured ΔR 5.45 cm 8.46 cm 

Expected ΔR 4.67 cm 9.34 cm

Error in ΔR 0.78 cm 0.88 cm

Phase error 15o 17o

• Under good SNR conditions, small (cm) emulated target displacements are detected with 

<cm accuracy

• And only with a ground based receiver that would be stationary in reality

• Could be useful for persistent monitoring applications in local areas 



WF-01 | Present and Future Perspectives of Passive Radar

European Microwave Week 2017 EuRAD

• Two different strategies of the single bistatic data can be adopted

– The information contained in the single images can be extracted and then combined

Multi-perspective GNSS-based SAR

– Very little restriction on separation between satellites

– The set of images can be combined, and then the information can be extracted directly from the 

multistatic image 

Multistatic GNSS-based SAR

– Imposes more strict limits on angular separation among the transmitters

Multi-perspective/multistatic GNSS SAR
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Multi-perspective SAR imaging

• Images of the same scene obtained at different bistatic angles naturally look different

• Can this be used as a degree of freedom to enhance image information space?

• Current area of research: terrain classification using multi-perspective GNSS-based 
SAR
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 A non-coherent combination of the individual images results in a 

multistatic image whose resolution cell area is the overlapping 

segment of the single bistatic PSFs, and therefore may be essentially 

reduced

PSF A PSF B MPSF

98 m2 80 m2 17 m2

PSF AREA

Tx A
Tx B

• Bistatic PSF is approximately an ellipse with resolution cell area around 100 m2

Bi-/Multistatic image response
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• Example #1  improved resolution allows to resolve multiple scatterers

• Example #2:  false target positions due to intersection of PSF from different scatterers (ghosts)

• Point-features of the image are extracted by means of an ad-hoc CLEAN technique

• Such a technique jointly exploits spatial resolution improvement provided by the MSAR image and the phase 

information preserved in the BSAR images to correctly recover the features of the scene

BSAR #1 BSAR #2 MSAR

BSAR #1 BSAR #2 MSAR

Multistatic image of two close point scatterers
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• Iterative procedure comprising the following steps:

1. Brightest point of the MSAR image is selected

2. Scatterer’s position and the N amplitudes (absolute 

values, one for each bistatic image) are estimated 

from the multistatic image

3. To recover the complex amplitudes information, a 

cost function is defined by using both bistatic (still 

preserving phase information) and multistatic 

images

4. Bistatic images are updated by coherently 

subtracting estimated scatterer’s responses

5. Updated bistatic images are non-coherently added 

to update the multistatic image

• Process carries on until residual energy threshold is 

reached

Joint bi-/multistatic CLEAN
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Sat. #736
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• Different orientation of the bistatic PSFs 

 improved resolution

• We expect improved capability to discriminate features of the 

scene

• Joint bi/multi-static CLEAN applied to correctly recover point 

features

Case PSF #1 PSF #2 MPSF

Area [m2] 153 84 39

Ex
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e
ri

m
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n
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lt
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SF

Experimental multistatic image
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 Isolated trees in the middle of a grassy area facing toward the receiver

Experimental results
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BSAR #2

• A number of scatterers have been extracted from the BSAR images

• The accuracy of their localization is severely affected by the coarse resolution

BSAR #1

Actual tree location

Tree lines-bistatic images
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• Enhanced accuracy of estimated locations

• A limited number of artifacts have been extracted

• A greater number of trees has been sensed, allowing a more detailed scene reconstruction

# tree
δp BSAR #1

[m]
δp BSAR #1

[m]
δp MSAR 

[m]

1 2.10 - 1.01

2 - - -

3 - - 4.56

4 - 4.90 -

5 3.93 5.04 4.32

6 - - -

7 8.91 2.14 1.91

8 - 2.20 6.48

9 - - -

10 7.11 - 5.22

11 - - -

12 - 3.52 4.29

13 - - -

14 0.95 - 0.90

15 - 7.27 7.69

Mean error 4.60 4.18 4.04

Sensed trees 5/15 6/15 9/15

MSAR

Actual tree location

Tree lines-multistatic image
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GNSS-based passive radar 

 Basic concepts

– SAR fundamentals

– Intro to passive SAR using GNSS 

– GNSS-SAR image formation and 
experimental results

 Advanced concepts: 

– CCD – Coherent Change Detection

– Multi-perspective imaging

– Multi-static imaging

 GNSS-passive radar for maritime 
surveillance:

– Intro to using GNSS for passive 
sea target detection;

– Basic/advanced processing and 
experimental results

… as a Synthetic 
Aperture Radar 

(SAR) … as a radar
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Passive Bistatic Radar (PBR) system exploiting GNSS (Galileo, Glonass, GPS) 
constellation signals for maritime surveillance purposes.

GNSS-based radar... for target detection
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Processing techniquesDirect 

signal Surveillance

signal

Range

matched filter

1st batch nth batch Nth batch
range compressed data

Tb

Signal

synchronization

Reference 

signal

Basic technique Long integration time technique

∑

|(∙)|2

FFTu

∑

|(∙)|2

FFTu

range migration

compensation

Doppler migration

compensationRD maps integration

Compensated
RD maps integration

RD maps formation

Compensated
RD maps formation

RDn

RDn
TMC

RD integrated map RDn
int

RD integrated map RDn
int

Target Motion 
Compensation
(TMC)
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Experimental results (High RCS target)

37

Satellite 1 Satellite 2

 Experimental trials in Plymouth Harbour, UK

 Two Galileo transmitters

 High RCS target (ferry) equipped with Automatic Identification 
System (AIS)

Basic technique - Tbatch = 2.5 s, Tobs= 10 s

 Target visible in both maps

 Clutter reflections from satellite 1 is weaker than that from satellite 2
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Experimental campaign (Low RCS target)
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LOS

Parameter Value Unit

Satellite

number 732 -
carrier frequency 1603.6875 MHz

azimuth (clockwise from N) 3.0 ~ 6.8 deg

elevation 73.2 ~ 73.1 deg

Processing 
parameters

sampling frequency 50 MHz
pulse repetition interval 1 ms
dwell time 118 s
batch duration (CPI) 3 s

non-coherent processing interval 60 s

 Experimental trials in July 2015

 Aberystwyth, Wales, UK

 Single GLONASS transmitter

 Receiver prototype by UoB team

 Cooperative target equipped with GPS 
receiver
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• Frame duration: 1 s

• Non-coherent integration time: 60 s

• Integrated maps pertaining the actual target velocity

• Three intervals: T1 = [0 - 60]s; T2 = [30 - 90]s; T3 = [58 - 118]s

• ×: actual target location

T1 = [0 – 60] s T2 = [30 – 90] s T3 = [58 – 118] s

 Bright spots corresponding to target actual locations

 The target can be isolated from the disturbance background

Experimental results (Low RCS target)

… and for more results on GNSS-based target detection stay tuned!
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 GNSS- one of the possible illuminators of opportunity

 Very limited range compared to other illuminators

 But

– Global, persistent coverage anywhere in the world (even poles, open sea 

etc)

– Inherently multi-static/multi-perspective system

 So plenty of scope for more local applications, as a gap filler to other 

systems etc

 The vision for the future of GNSS radar

– Multi-perspective/multi-static radar/SAR. 

– Not only for GNSS, but also other systems, active or passive. When all 

constellations fully operational, 24-48 satellite transmitters in space- ideal 

for exploring capability

– Already started, but only scratched the surface!

Conclusions
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