

Passive Imaging Using SAR and ISAR Technology

<u>Dr. Piotr Samczyński</u>, e-mail: P.Samczynski@elka.pw.edu.pl

Prof. Mateusz Malanowski e-mail: M. Malanowski @elka.pw.edu.pl

Warsaw University of Technology

I aculty of Electronics and Information Technology

Institute of Electronic Systems

Research Group on Radar Techniques

WUT is the largest of 18
Polish technical universities

Public state school

Research Group on Radar Techniques

- Signal sampling (ADCs)
- Telecommunication signal processing
- DSP platforms
- Simulation and modeling
- Target tracking
- Image processing

Tutorial Agenda

- Short intro to SAR/ISAR imaging (a monostatic case)
- Introduction to passive bistatic radar imaging
- Passive SAR imaging using non-cooperative satellite-based illumination
- Passive SAR imaging using commercial ground based illuminators
- Passive ISAR imaging
- Summary

SAR - Synthetic Aperture Radar

Radar mounted on the moving platform (UAV, aircraft, missile, satellite, etc.)

SAR Image

(*) M. Caris, S. Stanko, A. Leuther, A. Tessmann, M. Malanowski, P. Samczynski, K. Kulpa, M. Cohen, P. Kovacs, A. C. Papanastasiou, C. Topping, G. E. Georgiou, R. Guraly: "SARape – Synthetic Aperture Radar for all weather penetrating UAV Application", in Proc. of IRS 2013, vol.1, pp. 41-46, 19-21 June 2013, Dresden, Germany16.

(**) M. Caris, S. Stanko, M. Malanowski, P. Samczyński, K. Kulpa, A. Leuther, A. Tessmann, mm-Wave SAR demonstrator as a test bed for advanced solutions in microwave Imaging, Aerospace and Electronic Systems Magazine, IEEE, vol.29, no.7, July 2014, pp.8,15

Azimuth + Range compression = 2D SAR image

Azimuth + Range compression = 2D SAR image

Range compression

Slant range resolution:

$$r_{s} = \frac{c}{2\beta}$$

Relief displacement in slant-range representation:

$$r_s \cong h \cdot \sin \theta$$

Relief displacement in slant-range representation:

$$r_g \cong h \cdot \tan \theta$$

Ground range resolution:
$$r_g = \frac{c}{2\beta \cdot \cos \theta}$$

$$\beta = 1GHz$$

$$\theta = 30^{\circ}$$

 $r_{o} \approx 17,5 cm$

Cross-range compression

Received signal phase:

$$\varphi(t) = \varphi_o - 2 \cdot \frac{2\pi \cdot r(t)}{\lambda}$$

Distance to target:

$$r(t) = \sqrt{R^2 + (v \cdot t)^2}$$

Taylor extension:

$$r(t) = R + \frac{(v \cdot t)^2}{2R} + \dots$$

Received phase:

$$\varphi(t) = \varphi_o - \frac{4\pi}{\lambda} \left[R + \frac{(v \cdot t)^2}{2R} + \dots \right]$$

Received frequency:

$$f(t) = \frac{1}{2\pi} \frac{d\varphi(t)}{dt} \approx -\frac{2v^2}{\lambda R}t$$

Received frequency:

$$f(t) = \frac{1}{2\pi} \frac{d\varphi(t)}{dt} \approx -\frac{2v^2}{\lambda R}t$$
LFM signal

Limitations and Practical Difficulties:

Ideal case

$$\varphi(t) = \varphi_o - \frac{4\pi}{\lambda} \left[R + \frac{(v \cdot t)^2}{2R} \right]$$

(ise)

SAR Processing

Limitations and Practical Difficulties:

Reality

$$\varphi(t) = \varphi_o - \frac{4\pi}{\lambda} \left[R + v_r \cdot t + \frac{(v \cdot t)^2}{2R} + \dots \right] = \varphi_o - \left[\xi + \chi t + \gamma t^2 + \dots \right]$$

- Limitations and Practical Difficulties:

Limitations and Practical Difficulties:

Autofocus techniques – an overview

Non-parametric:

- Prominent Point Processing (PPP),
- Phase Gradient (PG),

Parametric:

Non-coherent:

- Contrast Optimization (CO)
- MapDrift (MD)

$\varphi(t) = \varphi_o - \frac{4\pi}{\lambda} \left[R + v_r \cdot t + \frac{(v \cdot t)^2}{2R} + \dots \right]$

Coherent:

- Phase Difference (PD)
- Shift And Correlate (SAC)
- Coherent MapDrift (CMD)

(ISE)

SAR Processing

Limitations and Practical Difficulties:

CO Autofocus Technique

$$C = \frac{E\left[\left(I(x,y)^{2} - E\left[I(x,y)^{2}\right]\right)^{2}\right]}{E\left[I(x,y)^{2}\right]}$$

- Limitations and Practical Difficulties:

CO Autofocus Technique

Example:

On courtesy of Professor Marco Martorella -University of Pisa

The higher the Image Contrast the better the image focus

- Limitations and Practical Difficulties:

MD Autofocus Technique

MD cross-correlation function:

$$r(\tau) = \int_{t=-\infty}^{\infty} |I_1(t)| \cdot |I_2(t-\tau)| dt$$

Estimated velocity is determined as:

$$\widetilde{v}_{k+1} = \Delta \widetilde{v}_k + \widetilde{v}_k$$

where:

$$\Delta \widetilde{v}_{k} = \frac{\widetilde{v}_{k}^{2}}{\theta \cdot R \cdot f_{PRF}} \cdot \Delta x$$

Estimated acceleration:

$$\widetilde{a} = \frac{\Delta \widetilde{v}}{\Delta t} = \frac{(\widetilde{v}_{1,2} - \widetilde{v}_{2,3})}{N} \cdot f_{REP}$$

(*) P. Samczyński, G. Pietrzyk, K. Kulpa, Simple Method for Estimating Along Track Acceleration Using Autofocus Map Drift Algorithm, Proc. of the International Radar Symposium – IRS 2005, 06-08 September, Berlin, Germany, pp.43-47

Limitations and Practical Difficulties:

CMIDA Atultofo Cuts Teehnique

CMDccrossrcelatedationtfunction:

$$r_C(\tau) = \int_{t=-\infty}^{\infty} I_1(t) \cdot I_2^*(t-\tau) e^{-j \cdot \pi \cdot \frac{\Delta f}{2} \cdot t} dt$$

where:

$$\Delta f = 2k\beta_2 T_{ob} / \pi$$

Estimateted veilo (its): (**):

$$\hat{v}_2 = \sqrt{\frac{R \cdot \theta \cdot v_1}{2\frac{\Delta x}{f_{PRF}} + \frac{R \cdot \theta}{v_1}}}$$

(*) P. Samczyński, K. Kulpa, Concept of the Coherent Autofocus Map-Drift Technique, Proc. of the International Radar Symposium (IRS 2006), 23-25 May 2006, Cracow, Poland, pp.63-66

(**) P. Samczynski: "Super-Convergent Velocity Estimator for an Autofocus Coherent MapDrift Technique", in IEEE Geoscience and Remote Sensing Letters, Vol. 9, Issue 2, March 2012, pp. 204-208

Short intro to SAR/<u>**ISAR**</u> imaging (a monostatic case)

ISAR - Inverse SAR

ISAR – Inverse SAR

Doppler frequency

$$f_d = \frac{2V_r}{\lambda} = \frac{2\omega R \sin(\theta)}{\lambda}$$

Frequency resolution

$$\Delta f_d = \frac{1}{T}$$

ISAR – Inverse SAR

Simple ISAR Processing

(*) M. Wielgo, P. Samczyński, M. Malanowski, K. Ndini, K. Kulpa, P. Baranowski, The SARENKA SAR system – Experimental results of ISAR imaging, in Proc. of 15th International Radar Symposium (IRS), 2014, pp.1,4, 16-18 June 2014

ISAR – Inverse SAR

Geometry No. 2

Introduction to passive bistatic radar imaging

(ISE)

Introduction to passive radar imaging

Passive radars:

- ground based PCL system for air surveillance
- technology entering to the maturity stage

New trends in passive radars:

- airborne passive radar applications
- SAR/ISAR mapping
 - both for ground based and moving systems

Illuminators of Opportunity

- Analogue TV (long range, poor signal characteristics)
- FM radio (long range, relatively low resolution, content-dependent)
- <u>DVB-T</u> (medium range, good range resolution, signal conditioning)
- DAB (medium range, good range resolution, not widespread)
- GSM (short range, relatively low resolution)
- DVB-S (very short range, very good range resolution)
- Others (WiFi, WiMAX, GNSS)
- Other radars (ATC, EW, SAR, ...)

Passive SAR Imaging

- Passive SAR Imaging using non-cooperative sattelite-based illumination
- Passive SAR Imaging using commercial ground based illuminators

System Geometry

Target

System Geometry

For such geometry the **SAR image** can be obtained using **FFT in cross-range!**

For the observation time T, the FFT resolution equals:

$$\Delta f_d = \frac{1}{T} = \frac{v \cdot \delta_a}{\lambda \cdot R_a}$$

This gives cross-range resolution:

$$\delta_a = \frac{\lambda \cdot R_o}{v \cdot T}$$

This gives maximum cross-range resolution equals **L**, Where **L** is antenna length.

$$\delta_a = L_a$$

In active SAR radars cross-range

resolution equals L/2.

(*) P. Samczynski, K. Kulpa, "Passive SAR imaging using a satellite pulsed radar as an illuminator of opportunity", in Proc. of IRS 2012, May 23-25, 2012, Warsaw, Poland, pp. 157-161

Tx

Η

Processing

- Unknown parameters of Tx (PRF, chirp rate, etc.)
- Signal synchronization
- Unknown Tx trajectory

Geometry corrections is required

2011 July 03

The ASAR Tx (EnviSAT-1) of opportunity WUT C-band Rx, Biebrza, POLAND

Dual channel backward geometry

(*) P. Samczynski, K. Kulpa, M. Malanowski, P. Krysik, Ł. Maślikowski: "Trial Results on Passive SAR Measurement using the Envisat-1 Satellite as an Illuminator of Opportunity" – w Proceedings on EuSAR 2012 – 9th European Conference on Synthetic Aperture Radar, April 23-26, 2012, Nurnberg, 7 Germany, pp. 291-294

2012 April 07

The ASAR Tx (EnviSAT-1) of opportunity RMA C-band Rx, Brussels, BELGIUM

2012 April 07

2017 space-based pulse radars as illuminators," in Proceedings of NATO Specialist Meeting SET-187, Szczecin, Poland, 13–14 May 2013, p. CD

2012 April 08 - Envisat services interrupted:

the satellite was unexpectedly lost

2012 July 19

The TerraSAR-X Tx of opportunity WUT X-band Rx, Biebrza, POLAND

(*) L. Maślikowski, P. Samczyński, and M. K. Bączyk: "X-band receiver for passive imaging based on TerraSar-X illuminator," in Proceedings of 2013 Signal Processing Symposium (SPS) , 5–7 June 2013, Jachranka, Poland

2012 July 19

SAR Image

Passive SAR Image

(*) P. Krysik, Ł. Maślikowski, P. Samczyński, A. Kurowska, "Bistatic Ground-Based Passive SAR Imaging Using TerraSAR-X as an Illuminator of Opportunity", in 2013 International Conference on Radar,9-12 September 2013, Adelaide, Australia, ISBN 978-1-4673-5177-5, pp. 39-42

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany

Passive SAR Imaging

Challanges:

- include satellite geometry in processing
- polarimetry processing
- GMTI processing
- multistatic passive SAR Imaging using various Tx of opportunity and different scenarios

(*) Ł. Maślikowski, P. Samczyński, M. Bączyk, P. Krysik, K. Kulpa, Passive bistatic SAR imaging – Challenges and limitations, Aerospace and Electronic Systems Magazine, IEEE, vol.29, no.7, pp.23,29, July 2014

Passive SAR Imaging

- Passive SAR Imaging using non-cooperative satellite-based illumination
- Passive SAR Imaging using commercial ground based illuminators

System Geometry

Illuminator: Ground-based DVB-T transmitter

System Geometry

Tx to Rx distance can be approximated (using Taylor series) by:

$$l_{TxRx}(t) \cong L_{TxRx} + \frac{(vt)^2}{2L_{TxRx}} + \frac{vt}{2L_{TxRx}}$$

Rx to target distance:

$$l_{ORx}(t) \cong L_{ORx} + \frac{(vt)^2}{2L_{ORx}} + \frac{vt}{2L_{ORx}}$$

Signal phase in reference channel:

$$\varphi_{\text{Re }f}(t) = \frac{2\pi \cdot l_{TxRx}(t)}{\lambda}$$

Signal phase in reference channel:

$$\varphi_{Surv}(t) = \frac{2\pi \cdot (L_{TxO} + l_{ORx}(t))}{\lambda}$$

Range compression:

$$s_{xcorr}(\tau) = \int s_{\text{Re } f}(t) \cdot s_{Echo}^{*}(t+\tau) dt$$

System Geometry

Ground objects are imaged at the distance:

$$R_{Obj}(t) = L_{TxO} + l_{ORx}(t) - l_{TxRx}(t)$$

Target Phase:

$$\varphi_{Obj}(t) = \frac{2\pi R_{Obj}(t)}{\lambda} = \varphi_{Surv}(t) - \varphi_{Re f}(t) = \frac{2\pi (L_{TxO} + l_{ORx}(t) - l_{TxRx}(t))}{\lambda}$$

Distane to target:

$$R_{Obj}(t) = \frac{1}{2} \left(\frac{1}{L_{ORx}} - \frac{1}{L_{TxRx}} \right) (vt)^{2} + \frac{1}{2} \left(\frac{1}{L_{ORx}} - \frac{1}{L_{TxRx}} \right) vt + \frac{1}{2} \left(\frac{1}{L_{TxRx}} - \frac{1}{L_{TxRx}} \right) vt + \frac{1}{2} \left(\frac{1}{L_{Tx$$

The Doppler frequency:

$$f_{Dop}(t) = \frac{2\pi}{\lambda} \left(\frac{1}{L_{ORx}} - \frac{1}{L_{TxRx}} \right) 2v^{2}t + \frac{\pi}{\lambda} \left(\frac{1}{L_{ORx}} - \frac{1}{L_{TxRx}} \right) v$$

Trial No 1

Trial No 2

Passive ISAR imaging

ISAR - How does it work? Geometry No. 1

Doppler frequency

$$f_d = \frac{2V_r}{\lambda} = \frac{2\omega R \sin(\theta)}{\lambda}$$

Frequency resolution

$$\Delta f_d = \frac{1}{T}$$

Passive ISAR results

Geometry No. 1

matched filter focused SAR

ISAR - How does it work?

Geometry No. 2

Received signal phase:

$$\varphi(t) = \varphi_o - 2 \cdot \frac{2\pi \cdot r(t)}{\lambda}$$

Distance to target:

$$r(t) = \sqrt{R^2 + (v \cdot t)^2}$$

match filter

Taylor extension:

$$r(t) = R + \frac{(v \cdot t)^2}{2R} + \dots$$

Received phase:

$$\varphi(t) = \varphi_o - \frac{4\pi}{\lambda} \left[R + \frac{(v \cdot t)^2}{2R} + \dots \right]$$

Received frequency:

$$f(t) = \frac{1}{2\pi} \frac{d\varphi(t)}{dt} \approx -\frac{2v^2}{\lambda R}t$$
LFM signal

Passive ISAR - Introduction

Pionner work in passive ISAR imaging:

- Martorella, M.; Palmer, J.; Homer, J.; Littleton, B.; Longstaff, I.D., "On Bistatic Inverse Synthetic Aperture Radar," in *Aerospace and Electronic Systems, IEEE Transactions on*, vol.43, no.3, pp.1125-1134, **July 2007**
- D. Olivadese, E. Giusti, D. Petri, M. Martorella, A. Capria, F. Berizzi, R. Soleti, "Passive ISAR imaging of ships by using DVB-T signals", in Proc. of IET International Conference on Radar Systems 2012
- Olivadese, D.; Giusti, E.; Petri, D.; Martorella, M.; Capria, A.; Berizzi, F., "Passive ISAR With DVB-T Signals," in *Geoscience and Remote Sensing, IEEE Transactions on*, vol.51, no.8, pp.4508-4517, Aug. 2013
- Martorella, M.; Giusti, E., "Theoretical foundation of passive bistatic ISAR imaging," in Aerospace and Electronic Systems, IEEE Transactions on , vol.50, no.3, pp.1647-1659, July 2014
- M. K. Bączyk, P. Samczyński and K. Kulpa, "Passive ISAR imaging of air targets using DVB-T signals," 2014 IEEE Radar Conference, Cincinnati, OH, 2014, pp. 0502-0506

Next step - use an autofocus techniques in passive ISAR imaging

Passive ISAR -System geometry

Geometry No. 2

Tx

Processing Stages

- Signal acquisition using Commercial-Off-The-Shelf devices
- Seperation of signals from different transmitters
- Clutter cancellation
- Crossambiguity calculation
- CFAR detection
- Bistatic tracking
- Target localization in Cartesian coordinates and target trajectory estimation
- ISAR processing

Verifications via Simulations

Simulated targets

Verifications via Simulations

Simulated targets

MIG-29

(B=400MHz)

A-380

(B=400MHz)

Verifications via Simulations

Simulated targets

MIG-29

DVB-T illuminator (B=7.8MHz)

A-380

DVB-T illuminator (B=7.8MHz)

Passive ISAR - Measured Results

Passive ISAR image of MIG-29 (simulated data)

(real data)

M. K. Bączyk, P. Samczyński and K. Kulpa, "Passive ISAR imaging of air targets using DVB-T signals," *2014 IEEE Radar Conference*, Cincinnati, OH, 2014, pp. 0502-0506

2014, pp. 0502-0506 Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany

Autofocusing in Passive ISAR imaging

Parametric autofocus

$$C(\omega, R_{crv}, \delta) = \max_{t} |I(t, \omega, R_{crv}, \delta)|$$

$$I(t, \omega, R_{crv}, \delta) = s_{surv}(t) * h(t, \omega, R_{crv}, \delta)$$

$$s_{surv}(t) = As_T(t - (\frac{r_R(t) + r_T(t)}{c}))exp\left\{j\frac{2\pi}{\lambda}(r_R(t) + r_T(t))\right\}$$

$$h(t) = s_{surv}^*(-t)$$

Tx

Simulations & verifications

Simulated parameter

Radius of curvature: $R_{crv} = 3000 m$

target radial speed: $\omega = 0.02 \frac{\text{rad}}{\text{s}}$

center angle:

$$\delta_0 = -pi/2$$

estimated initial parameters from Kalman Tracker

$$\omega_i = 0.026 \ rad/s$$
,
 $R_{crv_i} = 2294 \ m$,
 $\delta_i = -1.5681 \ rad$.

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany

Results

Real parameters:

Radius of curvature: $R_{crv} = 3000 m$ target radial speed: $\omega = 0.02 \frac{\text{rad}}{s}$

center angle:

$$\delta_0 = -\frac{pi}{2} \approx 1,5708$$

estimated initial parameters

 $R_{crv_i} = 2294 m$

 $= 0.026 \, rad/s$, ω_i

 δ_i $= -1.5681 \, rad$

$$f_d(t) \approx \frac{1}{\lambda} \left\{ v \left[\cos(\delta) + \cos(\alpha) \right] + v^2 t \left[\frac{\sin^2(\alpha)}{R_R} + \frac{\sin^2(\delta)}{R_T} \right] + \frac{3v^3 t^2}{2} \cos(\alpha) \left[\frac{\sin^2(\alpha)}{R_R^2} + \frac{\sin^2(\delta)}{R_T^2} \right] \right\}$$

ISAR image – unfocus image

Autofocusing and velocity estimation

$$f_d(t) \approx \frac{1}{\lambda} \left\{ v \left[\cos(\delta) + \cos(\alpha) \right] + v^2 t \left[\frac{\sin^2(\alpha)}{R_R} + \frac{\sin^2(\delta)}{R_T} \right] + \frac{3v^3 t^2}{2} \cos(\alpha) \left[\frac{\sin^2(\alpha)}{R_R^2} + \frac{\sin^2(\delta)}{R_T^2} \right] \right\}$$

ISAR image – after autofocus

Summary

- Passive SAR/ISAR still a lot of challenging have to be solved
 An autofocus is one of such a challange...
- Successful verification of the passive SAR/ISAR imaging
- Potential possibility of ground, sea and air target classification
- Enhance functionality cooperation of active and passive sensors
- Further research is required
- Multiple receivers for passive SAR/ISAR imaging purposes...
 and narrowband passive SAR/ISAR imaging

Thank you for your attention!!

