Data Association in Multistatic Passive Radar Systems

Martina Broetje and Wolfgang Koch

Department SDF, Fraunhofer FKIE, Wachtberg, Germany

martina.broetje@fkie.fraunhofer.de

wolfgang.koch@fkie.fraunhofer.de

Passive Radar Application: Air Surveillance

using transmitter of opportunity, e.g. tv, radio, mobile phone stations

Possibly long range and high altitude

Passive radar systems are developed e.g. by Hensoldt and Fraunhofer FHR

Passive Radar Application: Maritime Surveillance

using transmitter of opportunity, e.g. tv, radio, mobile phone stations

Range is limited by the radar horizon

Fraunhofer FKIE develops a demonstrator for GSM passive radar

Passive Radar Application: Security

WiFi emitter

Passive Radar system

e.g. developed by

University of Rome (La Sapienza)

Data fusion and advanced tracking

Track initialization

Data Management and Distribution

Motivation

Advantages of multistatic systems

- Improved detection (different bistatic angles, redundancy)
- Improved target localisation
- Passive systems: no need for own transmitters (no frequency permission, low power consumption, covert operation)

Target tracking in multistatic systems

- Target localization in Cartesian coordinates
- Important for sensors of low accuracy

Particular challenges:

- Robust target tracking algorithms for large numbers of false alarms
- Target tracking algorithms for passive radar using digital broadcasting signals

The bistatic measurement

Bistatic range:

- \blacksquare TDoA τ between direct signal and echo signal
- Bistatic Range: $r = \tau \cdot c + ||s o||$ or r = ||q o|| + ||q s||
- describes ellipse in 2D and ellipsoid in 3D
- accuracy depends on the band width of the signal

The bistatic measurement

Bistatic range-rate:

- lacktriangle measured Doppler shift in Hz f_d
- velocity component of bistatic range $\dot{r} = -f_d \lambda = \left(\frac{q-s}{\|q-s\|} + \frac{q-o}{\|q-o\|}\right)^T \cdot v$
- accuracy depends on the wave length of the signal and the integration time

The bistatic measurement

Azimut Winkel:

- accuracy depends on the apperture size and the wavelength of the signal

Characteristics of different passive radar broadcasters

- FM (analogue radio):
 - high power
 - Low bandwidth → poor range resolution
- DAB / DVB-T (digital radio and television):
 - High bandwidth → good range resolution
 - Single frequency characteristics
- GSM (mobile phone):
 - Many base stations available
 - Low power
 - Low bandwidth → poor range resolution
- WIFI (WLAN):
 - Very high bandwidth → very good range resolution
 - Very low power → only for near field operation

Principle of target tracking

Propagation of *posterior pdf* according to Bayes formalism

 $\{\underline{\mathbf{X}}_k\}$: target state process (r.v.) $\{\underline{\mathbf{Y}}_k\}$: measurements process (r.v) $\mathcal{Z}_{1:k}$: collection of measurements from time t_1 up to time t_k (realisations)

- Initialisation: $p_{\underline{\mathbf{X}}_1|\underline{\boldsymbol{\Upsilon}}_1}(\boldsymbol{x}|\mathcal{Z}_{1:1})$
- Prediction:

liction:
$$p_{\underline{\mathbf{X}}_k|\underline{\boldsymbol{\Upsilon}}_{1:k-1}}(\boldsymbol{x}|\mathcal{Z}_{1:k-1}) = \int p_{\underline{\mathbf{X}}_k|\underline{\mathbf{X}}_{k-1}}(\boldsymbol{x}|\boldsymbol{y}) \; p_{\underline{\mathbf{X}}_{k-1}|\underline{\boldsymbol{\Upsilon}}_{1:k-1}}(\boldsymbol{y}|\mathcal{Z}_{1:k-1}) d\boldsymbol{y}$$

Filtering:

Likelihood function (sensor model)

$$p_{\underline{\mathbf{X}}_k|\underline{\boldsymbol{\gamma}}_{1:k}}(\boldsymbol{x}|\mathcal{Z}_{1:k}) \propto p_{\underline{\boldsymbol{\gamma}}_k|\underline{\mathbf{X}}_k}(\mathcal{Z}_k|\boldsymbol{x}) \ p_{\underline{\mathbf{X}}_k|\underline{\boldsymbol{\gamma}}_{1:k-1}}(\boldsymbol{x}|\mathcal{Z}_{1:k-1})$$

The Multisensor Likelihood Function

 n_t : number of transmitters n_t

$$p(Z_k|x_k) = \prod_{i=1}^{n_t} p(Z_k^i|x_k)$$

not valid for SVN!

assuming perfect association:

$$p(Z_k|x_k) = \prod_{i=1}^{n_t} p(z_k^i|x_k)$$

$$\approx \prod_{i=1}^{n_t} N(z_k^i; h(x_k), R)$$
 assuming Gaussian Measurement Model

A linear propagation- and measurement model leads to the well known Kalman Filter propagation formula

Measurement uncertainty in Cartesian coordinates

Single transmitter, one instant of time

Uncertainty in Cartesian depends on:

- Bistatic geometry
- Range and angle accuracy (here Gaussian)
- non-Gaussian shape due to non-linearity of measurement equation

Approximation of measurement uncertainty

- Unscented Transform
- Linearisation

Good range, poor azimuth

Poor range and azimuth

⇒ Approximation by Gaussian or Gaussian sum is typically adequate to handle the non-linearity in passive radar tracking

The Multi-Sensor Likelihood function

Describes also data ambiguity

Association between measurements and target is *ambiguous*:

- false alarms
- missed detections (dependent on PD)

Likelihood function of 2 Tx/Rx pairs:

$$p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\mathcal{Z}_k|\boldsymbol{x})$$

$$= p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\mathcal{Z}_k^1|\boldsymbol{x}) \ p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\mathcal{Z}_k^2|\boldsymbol{x})$$

$$\mathcal{Z}_k = \{\mathcal{Z}_k^1, \mathcal{Z}_k^2\}$$
 measurements of different Tx/Rx pairs are independent

Multi Hypothesis Tracking: Principles

Single-target hypotheses:

Discretisation of the event space (2 tasks):

- Data association
- Target state estimation

In reality:

- Increasing number of hypotheses
- Approximation techniques required

Multi Hypothesis Tracking: Multiple targets

- Single-target assumption fails in case of closely spaced targets
- Multi-target likelihood: calculation by multitarget hypotheses

Multi-target hypotheses

single-target hypotheses:

 $\mathcal{H}_1: z_3 \& z_1$

 $\mathcal{H}_2: z_4 \& z_1$

 $\mathcal{H}_3: z_3 \& z_2$

 $\mathcal{H}_4: z_4 \& z_2$

multi-target hypotheses:

 $\mathcal{H}_1 \& \mathcal{H}_4$

 $\mathcal{H}_2 \& \mathcal{H}_3$

Multi-target Likelihood:

$$p_{\underline{\Upsilon}_k|\underline{\Xi}_k}(\mathcal{Z}_k|\boldsymbol{\xi}) = p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\boldsymbol{z}_1, \boldsymbol{z}_3, \mathcal{H}_1|\boldsymbol{x}_1) \ p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\boldsymbol{z}_2, \boldsymbol{z}_4, \mathcal{H}_4|\boldsymbol{x}_2)$$
$$+ p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\boldsymbol{z}_1, \boldsymbol{z}_4, \mathcal{H}_2|\boldsymbol{x}_1) \ p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\boldsymbol{z}_2, \boldsymbol{z}_3, \mathcal{H}_3|\boldsymbol{x}_2)$$

Association problem for single frequency networks (DAB/ DVB-T)

Unknown association between measurements and illuminators

Example: 2 targets, 2 Tx, 1 Rx $p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\mathcal{Z}_k|\boldsymbol{x}) \neq p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\mathcal{Z}_k^1|\boldsymbol{x}) \; p_{\underline{\Upsilon}_k|\underline{\mathbf{X}}_k}(\mathcal{Z}_k^2|\boldsymbol{x})$

single-target hypotheses:

 $\mathcal{H}_1: z_1 \& z_3$

 $\mathcal{H}_2: z_1 \& z_2$

 $\mathcal{H}_3: z_3 \& z_4$

 $\mathcal{H}_4: z_2 \& z_4$

multi-target hypotheses:

 $\mathcal{H}_1 \& \mathcal{H}_4$

 $\mathcal{H}_2 \& \mathcal{H}_3$

multi-target conflicts: not only for close targets

Task of Target Tracking

- For known association the multi-sensor likelihood function describes the sensor specific estimation task
- The second task of target tracking is to solve the data ambiguity by associating measurements with targets (association task)
 - for SFN additionally associating measurements with transmitters
- The degree of difficulty in target tracking is dependent on:
 - the measurement error and the Cartesian shape of the bistatic measurement
 - the number of false alarms
 - the number of targets (and the closeness of targets in measurement coordinates)
- ⇒ Choice of appropriate fusion architecture for different passive radar systems

Multi-sensor fusion techniques: Distributed tracking

Processing measurements of sensor 1

Processing measurements of sensor 2

Fused results

Multi-sensor fusion techniques: Centralised tracking

Processing measurements of sensor 1 and 2

Advantages:

- Good association due to localisation gain (small prediction covariance)
- Robust in case of large number of false alarms

Disadvantages:

- **Higher complexity**
- Sensitive against mismatch between data and model

Distributed Tracking in Passive Radar

- Separate tracking for each Tx/Rx pair in measurement coordinates
 - ⇒ R/D Tracking
 - avoid loose due to approximation in Cartesian coordinates
 - identify Tx/Rx combinations which contribute to target detection
- Cartesian localisation by correlation of R/D tracks from different Tx/Rx pairs

Centralized Tracking in Passive Radar (1-Stage MHT)

Distributed Tracking in Passive Radar (2-Stage MHT)

Combinded Distributed and Centralized Tracking (3-Stage MHT)

Simulation Scenario

x in km

- 10 targets in different geometries ←
- 1 receiver
- 5 transmitters

accuracy	Scenario A	Scenario B
bist. range [m]	500	30
Azimuth [°]	3	3
range-rate [m/s]	0.6	0.6

from different transmitters

1-stage MHT: - good estimation performance in scenario A - long track extraction time

Simulation Scenario

Evaluation of Scenario 1 via Monte Carlo Runs

1-stage MHT: - good estimation performance in scenario A long track extraction time

Simulation Scenario

- 10 targets in different geometries ←
- 1 receiver ○
- 5 transmitters △

3-stage MHT is a compromise of centralized and distributed tracking

Number of false tracks per second

Poor performance of 2-stage MHT in scenario with low range accuracy

Runtime Comparison (Runtime per Second)

Conclusions

- The fusion of measurements from multiple bistatic sensor pairs is a key feature of passive radar (increased coverage, improved estimation accuracy)
- Task: realize this fusion gain by correctly associating measurements of the different bistatic sensor pairs and by appropriate estimation techniques.
- The dimension of the association problem in passive radar applications depends strongly on the precision of the bistatic measurements. Multi-target conflicts can arise, even if the targets are geographically well-separated. The association problem further increases when transmitters are arranged in single-frequency networks.
- The design of the tracking algorithms needs to be adapted to the specific characteristics of the passive radar system and the application scenario.