FM/DAB/DVB-T Multiband Multistatic Passive Radar System – Design Considerations and Lessons Learnt

M. Edrich

Hensoldt Sensors GmbH / ex Airbus DS EBS GmbH

New Company effective March 1st, 2017: HENSOLDT

Airbus Defence & Space → carve-out of radar, optronics, EW and avionics business →

→ Airbus DS Electronics & Border Security → rebranding from March 1st, 2017 to → **HENSOLDT**

Passive Radar Design Study, System Overview and Lessons Learnt:

- Goal and Basic Design Considerations
- Analysis of Transmitter Network Structure for Germany and Network Model
- Passive Radar Design and System Overview
- Measurement Results
- Lessons Learnt and Conclusion

Basic Question and Activities

Can a conventional active air surveillance radar be replaced / augmented by a Passive Radar system, consisting of one or several receiver sites ?

- -> 360° az. coverage, ~ 60° el. coverage
- -> range ~100km @ typical A/V RCS
- -> handling, 3D-localization and separation of a great number of aerial targets

- → Analyse networks available as illuminators
- → Design, built and test a prototype system and perform tests to gain experience

Multistatic Passive Radar Principles & Problems

- 1. Ensure multistatic illumination of airspace & targets
- 2. Suppress strong 'Direct Signals' from Tx
- 3. Detect, fuse detections & separate targets, localize targets

Multiple Tx, Single Rx

Multiple Rx, Single Tx

Impressions of Separation Problem in Multi-Target Scenarios

Analysis of Transmitter Networks in Germany: FM, DAB, DVB-T

Broadcast Network	Frequency Band	Transmitter Bandwidth	Typical Transmitter Power (EIRP)
FM radio	88MHz - 108MHz	0 - 100kHz *)	10kW – 100kW
DAB radio	174MHz - 240MHz	1.5MHz	1kW – 10kW
DVB-T (television)	470MHz – 862MHz	7.6MHz	1kW – 100kW

$$P_{r} = \frac{P_{s} \cdot G_{s}(El)}{4\pi \cdot R^{2}} \cdot \frac{\lambda^{2}}{4\pi}$$

Multiple & Single Frequency Networks

In SFNs an ambiguity w.r.t. the origin of each received reflexion exists → multiple hypothesis tracking → increases complexity!

DAB SFN Ambiguity: Measurements in Ulm, Germany

250km

Data Fusion and Tracking in SFNs / MFNs

Analysis of Tx Networks in Germany (Area: 357.000km²)

FM:

- 145 transmitters >40dBW
- Multiple Freq. (MFN)

DAB:

- 176 transmitters >30dBW
- arranged in 33 SFNs

DVB-T:

- 434 transmitter >40 dBW
- arranged in 198 SFNs

DVB-T Prague Czech Re Strasbourg

- transmitter sites with at least 1 frequency >= 30 dBW
- transmitter sites with at least 1 frequency >= 40 dBW

Analysis of MFN / SFN Networks in Germany

FM: MFN, Tx-Grid approx. 50km

DAB: 33 SFNs of various size, typ. <10 Tx, max. 53 Tx per SFN

DVB-T: 198 SFNs of various size, <8 Tx per SFN

Tx Network Model for Germany

Passive Radar Multiband Demonstrator System

Multiband coverage →simultaneously processible transmitters:

- 8x/16x independent FM transmitters
 out of FM Band
 88 108 MHz
- 1*x DAB Single Frequency Network (SFN)
 out of DAB Band
 174 240 MHz
- 1*x DVB-T Single Frequency Network out of DVB-T Band 474 – 786 MHz (* 3 SFN parallel)

Processing:

- Realtime signal processing (Bistatic Plotdata)
- Realtime 3D tracking system

 (including multihypothesis tracking for SFN &
 multi-sensor-tracking for sensor cluster operation)

Single-Site Measurement Campaigns

Berlin Area, Germany, FM only

1 FM transmitter:

- range up to 100km
- covarage gaps
- accuracy >1km

8 FM transmitters:

- range up to 100km
- no covarage gaps
- accuracy <500m

Lake Constance Area, Germany

FM, DAB, DVB-T

Visualization of multistatic diversity:

Video: FM_DAB_DVB-T-Video

Dual-Site Operation

Passive Radar System Design

Evaluation of Combined Multistatic Plot Updates

Color Code:

number of plot updates to 3D-track per second

- → Min 3 updates / second
- → Max 30 updates / second

Provides by

- 2 x 8 FM Tx
- 1 DAB SFN
- 1 DVB-T SFN

Visualization of site-siversity:

Video_Site_and_Tx_Diversity

Lessons Learnt: Passive Radar Diversity Approach

Target detection by each one transmitter-receiver-constallation is limited by:

- terrain shadowing, esp. in low altitude targets
- multipath fading, both in the Tx-Target path and in the Target-Rx path
- angle-dependent target RCS fluctuation
- transmitter antenna elevation beamwidth, i.e. target illumination
- bistatic-range-dependent clutter characteristics
- PR blind zones (e.g. zero-doppler target trajectories)
- → Make use of diversity w.r.t. multiple Tx networks & frequency bands and multiple receiver sites

Summary

Transmitter network analysis (Germany):

- model for FM/DAB/DVB-T Tx grids, Tx power and elevation cov.

Passive radar system demonstrator built and optimised in several steps:

- FM
- DAB / DVB-T
- cross-band data fusion and tracking
- second PR receiver station (FM only) for receiver site diversity

Measurement results:

- FM: range 100km+, acc. ~ 500m

- DAB/DVB-T: range 50km+, acc. ~ 50m

Reliable wide area coverage:

- Tx diversity: 8...16 FM Tx, 1..4 DAB/DVB-T SFNs

- Rx diversity: multiple receiver sites

